Abstract

BackgroundClostridium botulinum is a diverse group of bacteria characterized by the production of botulinum neurotoxin. Botulinum neurotoxins are classified into serotypes (BoNT/A–G), which are produced by six species/Groups of Clostridia, but the genetic background of the bacteria remains poorly understood. The purpose of this study was to use comparative genomics to provide insights into the genetic diversity and evolutionary history of bacteria that produce the potent botulinum neurotoxin.ResultsComparative genomic analyses of over 170 Clostridia genomes, including our draft genome assemblies for 59 newly sequenced Clostridia strains from six continents and publicly available genomic data, provided in-depth insights into the diversity and distribution of BoNT-producing bacteria. These newly sequenced strains included Group I and II strains that express BoNT/A,/B,/E, or/F as well as bivalent strains. BoNT-producing Clostridia and closely related Clostridia species were delineated with a variety of methods including 16S rRNA gene, concatenated marker genes, core genome and concatenated multi-locus sequencing typing (MLST) gene phylogenies that related whole genome sequenced strains to publicly available strains and sequence types. These analyses illustrated the phylogenetic diversity in each Group and the diversity of genomic backgrounds that express the same toxin type or subtype. Comparisons of the botulinum neurotoxin genes did not identify novel toxin types or variants.ConclusionsThis study represents one of the most comprehensive analyses of whole genome sequence data for Group I and II BoNT-producing strains. Read data and draft genome assemblies generated for 59 isolates will be a resource to the research community. Core genome phylogenies proved to be a powerful tool for differentiating BoNT-producing strains and can provide a framework for the study of these bacteria. Comparative genomic analyses of Clostridia species illustrate the diversity of botulinum-neurotoxin-producing strains and the plasticity of the genomic backgrounds in which bont genes are found.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2502-z) contains supplementary material, which is available to authorized users.

Highlights

  • Clostridium botulinum is a diverse group of bacteria characterized by the production of botulinum neurotoxin

  • The strains were previously isolated from botulism cases and environmental samples and include 32 bont/A, six bont/B, nine bont/E, one bont/F, five bont/A1(B), two bivalent bont/A2f4, one bivalent bont/Bf and three strains that did not contain botulinum neurotoxin genes in the draft genome assemblies

  • Delineation of Clostridia species/Groups The phylogenetic relationships and diversity of BoNTproducing strains were evaluated with phylogenies of the 16S ribosomal ribonucleic acid (rRNA) gene, concatenated marker genes, and Single nucleotide polymorphism (SNP) and with average nucleotide identity

Read more

Summary

Introduction

Clostridium botulinum is a diverse group of bacteria characterized by the production of botulinum neurotoxin. Botulinum neurotoxins are classified into serotypes (BoNT/A–G), which are produced by six species/ Groups of Clostridia, but the genetic background of the bacteria remains poorly understood. The purpose of this study was to use comparative genomics to provide insights into the genetic diversity and evolutionary history of bacteria that produce the potent botulinum neurotoxin. BoNT-producing bacteria are members of at least four different bacterial species, as well as several well-defined subclades, that contain a large diversity of toxin types. Recombination among toxins and horizontal gene transfer between different species and/or Groups allow for substantial variation in botulinum neurotoxins and in the genomic backgrounds in which the same toxin type or subtype are found. Capturing data for both the genomic background as well as the toxin type provides valuable information about the diversity within BoNT-producing species/Groups and how this genetic and phenotypic variation is generated

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call