Abstract
The tumor protein 53 (TP53) tumor suppressor protein (17p13.1) acts as a significant regulator for the cell cycle normal function. The gene is frequently mutated in colorectal adenocarcinoma (CRC) patients and is associated to poor prognosis and low response rates to chemo-targeted therapy. Our purpose was to correlate TP53 expression with Mouse Double Minute 2 Homolog (MDM2), a proto-oncogene (12q14.3) and a major negative regulator in the TP53-MDM2 auto-regulatory pathway. A total of forty (n=40) colorectal adenocarcinoma (CRC) cases were included in this study. An immunohistochemistry-based assay was implemented by using anti-TP53 and anti-MDM2 antibodies in the corresponding tissue sections. Additionally, a digital image analysis assay was implemented for objectively measuring TP53/MDM2 immunostaining intensity levels. TP53 protein overexpression was detected in 27/40 (67.5%), whereas MDM2 overexpression in 28/40 (70%) cases. Interestingly, in 21/40 (52.5%) cases, a combined TP53/MDM2 co-expression was detected, whereas in 6/40 (15%), a combined loss of expression was identified (overall co-expression: p=0.119). p53 overexpression was significantly correlated to grade of the examined cases (p=0.001), whereas MDM2 to stage and max diameter of the malignancies (p=0.001 and 0.024, respectively). TP53/MDM2 over expression is a frequent and significant genetic event in CRCs associated with an aggressive biological behavior, as a result of increased dedifferentiation grade and advanced stage/elevated tumor volume, respectively. MDM2 oncogene overactivation combined with mutated and overexpressed TP53 is observed in sub-groups of patients leading to specific gene/protein signatures - targets for personalized chemotherapeutic approaches.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have