Abstract

The study aimed to evaluate and compare water sorption, solubility, and microhardness of zirconia-reinforced glass ionomer, resin-modified glass ionomer, type IX glass ionomer cements. 90 specimens were prepared in total of which 45 cylindrical specimens with dimensions of (6 × 4) mm and 45 disks with (10 × 2) mm were prepared from Zirconomer, RMGIC, and Type IX GIC restorative materials, each material having 30 specimens (15 disks, 15 cylinders). After taking the initial weight (W1), the 45 cylinders (15 of each material) were immersed in artificial saliva at 37°C for 28 days after which the weights W2 and W3 were weighed. The other 45 disks (15 of each material) were subjected to microhardness test under microhardness tester. Results were subjected to ANOVA and Tuckey's post hoc test. Zirconomer showed the maximum resistance to water sorption and solubility followed by RMGIC and type IX GIC with a significant p value of < 0.001 difference. For microhardness, Zirconomer showed the highest value with a significant p value of < 0.001 difference. But, there was no significant difference between RMGIC and Type IX GIC depicting almost equal strength. Water sorption, solubility, and microhardness of Zirconomer were significantly high in comparison to the other groups and it can be used as a posterior restorative material for stress-bearing areas. As pediatric dentistry demands restorations to be completed frequently in less than ideal conditions, Zirconomer has shown to be better than RMGIC and conventional GIC probably because of the improvisation in the GIC properties. Bethapudy DR, Bhat C, Lakade L, et al. Comparative Evaluation of Water Sorption, Solubility, and Microhardness of Zirconia-reinforced Glass Ionomer, Resin-modified Glass Ionomer, and Type IX Glass Ionomer Restorative Materials: An In Vitro Study. Int J Clin Pediatr Dent 2022;15(2):175-181.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.