Abstract
Background and purposeMarginal adaptation is critical for the long-term longevity and clinical success of dental restorations. Improper marginal adaptation may lead to oral fluids, resulting in microleakage and cement dissolution. The present in vitro study aimed to evaluate the marginal adaptation of nickel-chrome (Ni-Cr) copings, cobalt-chrome (Co-Cr) coping, and zirconium (Zr) copings, produced with different manufacturing procedures.Material and methodsA total of 45 copings were fabricated on a standardized metal die by using a two-stage putty impression and poured with die stone. They were divided into three groups of 15 each: A, B, and C. For group A, Ni-Cr copings were fabricated by conventional casting procedures; for group B, Co-Cr copings by direct metal laser sintering (DMLS); and for group C, zirconium copings by computer-aided design and computer-aided manufacturing (CAD/CAM) systems. Four areas around the tooth surface, namely, the mid-mesial, buccal, distal, and lingual surfaces, were digitally analyzed for marginal adaptation under the scanning electron microscope.ResultsThe mean marginal gap for group A on the mid mesial, buccal, distal, and lingual surfaces was 79.67, 83.27, 90.67, and 89.13 µm, respectively. The mean marginal gap for group B on the mid-mesial, buccal, distal, and lingual surfaces was 38.13, 46.20, 45.73, and 42.20 µm, respectively. The mean marginal gap for group C on the mid mesial, buccal, distal, and lingual surfaces was 36.73, 31.73, 29.00, and 30.53 µm, respectively.ConclusionThe marginal adaptation of CAD/CAM Zr copings is more accurate when compared to the DMLS Co-Cr and Cast Ni-Cr copings on a standard master die.
Highlights
Anterior and posterior teeth have been extensively restored, with single crown and bridges, for function, speech, comfort, and aesthetics
For group A, Ni-Cr copings were fabricated by conventional casting procedures; for group B, Co-Cr copings by direct metal laser sintering (DMLS); and for group C, zirconium copings by computer-aided design and computer-aided manufacturing (CAD/CAM) systems
Marginal adaptation is critical for long-term longevity and the clinical success of dental restorations
Summary
Anterior and posterior teeth have been extensively restored, with single crown and bridges, for function, speech, comfort, and aesthetics. Casting alloys have been an important part of restorative dental treatment for more than a century. Restorations commonly fabricated for fixed prosthetic treatment, such as inlays, onlays, crowns, and fixed partial dentures, are fabricated in the dental laboratory using the lost wax technique introduced by Taggart in 1907 [1,2]. The poor internal fit of a coping can increase the thickness of the cement and influence the mechanical stability of dental restorations. Marginal adaptation is critical for the long-term longevity and clinical success of dental restorations. Improper marginal adaptation may lead to oral fluids, resulting in microleakage and cement dissolution. The present in vitro study aimed to evaluate the marginal adaptation of nickel-chrome (Ni-Cr) copings, cobaltchrome (Co-Cr) coping, and zirconium (Zr) copings, produced with different manufacturing procedures
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.