Abstract

BackgroundWithin the past years, umbilical cord (UC) and amniotic membrane (AM) expanded in human platelet lysate (PL) have been found to become increasingly candidate of mesenchymal stromal cells (MSCs) in preclinical and clinical studies. Different sources of MSCs have different properties, and lead to different therapeutic applications. However, the similarity and differences between the AMMSCs and UCMSCs in PL remain unclear.ResultsIn this study, we conduct a direct head-to-head comparison with regard to biological characteristics (morphology, immunophenotype, self-renewal capacity, and trilineage differentiation potential) and immunosuppression effects of AMMSCs and UCMSCs expanded in PL. Our results indicated that AMMSCs showed similar morphology, immunophenotype, proliferative capacity and colony efficiency with UCMSCs. Moreover, no significantly differences in osteogenic, chondrogenic and adipogenic differentiation potential were observed between the two types of cells. However, AMMSCs exhibited higher PGE2 expression and IDO activity compared with UCMSCs when primed by IFN-γ and (or) TNF-α induction, and AMMSCs showed a higher inhibitory effect on PBMCs proliferation than UCMSCs.ConclusionThe results suggest that AMMSCs expanded in PL showed similar morphology, immunophenotype, self-renewal capacity, and trilineage differentiation potential with UCMSCs. However, AMMSCs possessed superior immunosuppression effects in comparison with UCMSCs. These results suggest that AMMSCs in PL might be more suitable than UCMSCs for treatment of immune diseases. This work provides a novel insight into choosing the appropriate source of MSCs for treatment of immune diseases.

Highlights

  • Within the past years, umbilical cord (UC) and amniotic membrane (AM) expanded in human platelet lysate (PL) have been found to become increasingly candidate of mesenchymal stromal cells (MSCs) in preclinical and clinical studies

  • Platelet lysis released sufficient amounts of growth factors The results showed that platelet-poor plasma (PPP) contained a certain concentration of platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), epithelial growth factor (EGF), Transforming growth factor-beta 1 (TGF-β1), insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF), and freeze-thaw rupture of platelets had greatly elevated levels of growth factors in PL

  • AM derived MSCs (AMMSCs) in PL showed similar morphology with UC derived MSCs (UCMSCs) The UCMSCs and ATMSCs expanded in PL showed fibroblast-like morphologies with parallel or vortex-like patterns, and no morphologic difference was observed between AMMSCs and UCMSCs at passage 5 (Fig. 2a)

Read more

Summary

Introduction

Umbilical cord (UC) and amniotic membrane (AM) expanded in human platelet lysate (PL) have been found to become increasingly candidate of mesenchymal stromal cells (MSCs) in preclinical and clinical studies. Mesenchymal stromal cells (MSCs) are popular cells for regenerative medicine due to their capacity of extensive self-renewal, multilineage differentiation potential, and immunosuppressive effects [1]. Due to their low proportion in human tissues, extensive in vitro expansion is necessary to attain sufficient cell numbers for MSCs-based therapies. Culture media for the isolation and expansion of MSCs in basic research and most clinical studies usually comprise fetal bovine serum (FBS). Many laboratories adapt their “xenogen-free or animal-free” culture condition to human platelet lysate (PL), which allows expansion and clinical grade production of MSCs for clinical applications [3]. The usage of PL in MSCs culture could provide advantages as follows: (1) PL as a human reagent, is the absence of any risk of xenogeneic immune reactions or transmission of bovine pathogens [4]. (2) MSCs in PL-supplemented medium display a smaller in size and more elongated morphology, faster attachment and migration rate, higher

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call