Abstract

To develop a cost-effective method for post-formation mitigation of iodinated disinfection by-products, degradation of iodoacids by UV, UV/PS (persulfate), and UV/H2O2 was extensively investigated in this study. UV direct photolysis of 4 iodoacids followed first-order kinetics with rate constants in the range of 2.43 × 10−4−3.02 × 10−3 cm2 kJ−1. The derived quantum yields (Ф254) of the 4 iodoacids range from 0.13 to 0.34, respectively. A quantitative structure-activity relationship (QSAR) model was subsequently established and applied to predict the direct photolysis rates of 6 other structurally similar iodoacids whose standards are commercially unavailable. At a UV dose of 140 mJ cm−2 which is typically applied for disinfection of drinking water, the removal percentages of 4 iodoacids were only between 3.35% and 34.7%. Thus, ICH2CO2H (IAA), the most photo-recalcitrant species, was selected as the target compound for removal in the UV/PS and UV/H2O2 processes. The IAA degradation rates decreased with increasing pH from 3 to 11 in both processes. Humic acid (HA) and HCO3− had inhibitory effects on IAA degradation in both processes. Cl− adversely affected the IAA degradation in the UV/PS process but had no effect in the UV/H2O2 process. Generally, in the deionized (DI) water, surface water, treated drinking water, and secondary effluent, UV/PS process is more effective than UV/H2O2 process for IAA removal, based on the same molar ratio of oxidant: IAA. SO4− generated in the UV/PS process yields a greater mineralization of IAA than HO in the UV/H2O2 process. IO3− was the predominant end-product in the UV/PS process, while I− was the major end-product in the UV/H2O2 process. The respective contributions of UV, HO, and SO4− for IAA removal in the UV/PS process were 7.8%, 14.7%, and 77.5%, respectively, at a specific condition (1.5 μM IAA, 60 μM oxidant, and pH 7). Compared to UV/H2O2 process, UV/PS was also observed as more cost-effective process based on the electrical energy per order (EE/O) and chemical cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.