Abstract

Many indices are used to monitor drought events. However, different indices have different data requirements and applications. Hence, evaluating their applicability will help to characterize drought events and refine the development of effective drought indices. We constructed different drought indices based on multisource remote sensing data and comprehensively evaluated and compared their applicability for drought monitoring throughout China. The characteristics of drought events in 2009 and 2011 were compared using various drought indices. The different time scales of the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Index (SPI) were used to evaluate remote sensing drought indices in different regions. Single drought indices, including the Vegetation Condition Index (VCI), the Temperature Condition Index (TCI) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data, the Precipitation Condition Index (PCI) derived from Tropical Rainfall Measurement Mission (TRMM) data, and the TCI and Soil Moisture Condition Index (SMCI) derived from Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) data, as well as combined drought indices, including the Microwave Integrated Drought Index (MIDI), Optimized Vegetation Drought Index (OVDI), Optimized Meteorological Drought Index (OMDI), Scale Drought Conditions Index (SDCI), and Synthesized Drought Index (SDI), were analyzed and compared to evaluate their applicability. The results showed that different drought indices have specific characteristics under different land use types in China. The VCI and TCI can better monitor long-term drought conditions, but they have a weak correlation with the in situ drought index in forestland and grassland areas. The correlation of SPI-1 with the PCI is higher than that with other single indices, which indicates that the PCI is a good short-term drought index. The SMCI has a better correlation with the short-term in situ drought index, but it is not conducive to drought monitoring in areas such as densely forested land and grassland. The correlations of the in situ drought index with the combined drought indices (the MIDI, OVDI, OMDI, SDCI, and SDI) are better than those with the single drought indices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.