Abstract

The aim of the study was to assess and evaluate the antimicrobial effectiveness of chitosan nanoparticles (CSNPs) with calcium hydroxide in the elimination of Enterococcus faecalis. Using the broth microdilution method, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of calcium hydroxide and CSNPs were measured. The antibiofilm effect of calcium hydroxide and CSNPs against E. faecalis biofilm was qualitatively analyzed using a crystal violet assay. A 7-day-old biofilms of E. faecalis grown on dentine discs were assigned to the following three groups (n = 11 dentine discs), normal saline (group I), calcium hydroxide (group II), and CSNPs (group III). Quantification of live and dead cells using confocal microscopy was done to evaluate the antibiofilm efficacy of the medicaments included in the study. MIC of calcium hydroxide and CSNPs against E. faecalis was observed at 2.5 mg/mL and 0.31 mg/mL, respectively. MBC of calcium hydroxide and CSNPs was observed at 2.5 mg/mL and 0.31 mg/mL, respectively. Using Crystal Violet (CV) assay, calcium hydroxide and CSNPs showed biofilm inhibition at concentrations of 2.5 mg/mL and 0.625 mg/mL, respectively. Confocal laser scanning microscopy analysis found that both calcium hydroxide and CSNPs showed a significant decrease in viable cells at their MBC values compared to the control group's normal saline. CSNPs showed a significantly lower percentage of live cells than calcium hydroxide (P < 0.05). The study results reveal that the antimicrobial efficacy of CSNPs is better than calcium hydroxide and normal saline against E. faecalis biofilm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.