Abstract

In the present work, novel double-decker samarium(III), europium(III), and ytterbium (III) phthalocyanines (SmPc2, EuPc2, and YbPc2) bearing 4-(hydroxyethyl)phenoxy moieties have been synthesized and their electrochemical redox, spectroelectrochemical, and electrocolorimetric properties of the complexes have been inquired comparatively in two different non-aqueous solution. All complexes were observed to expose a series of usually reversible phthalocyanine ring-based one-electron reduction and oxidation processes. The effect of the size of rare earth metal ion was clearly reflected as the modest shift in half-wave potentials. Enriched electron transfer processes of the complexes and the interaction between the electrochemically generated anionic and cationic species caused distinct spectral and color changes, identified with in-situ spectroelectrochemical and in-situ electrocolorimetric measurements in solution medium. Spectroelectrochemical and electrocolorimetric measurements of the complexes were also performed in the solid state as the Langmuir-Blodgett film on an indium tin oxide glass in order to understand their technological applicability in electrochromic devices as color changing material. Comparative evaluation of these measurements suggested that Langmuir-Blodgett films of SmPc2 and EuPc illustrate highly reversible distinct color change from green to purple with satisfying electrochromic performance for electrochromic device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.