Abstract
Biomechanical and electromyographic characteristics of locomotion were studied before and after a space flight on days 3, 7, and 10 after landing in 18 participants of prolonged space missions on board the International Space Station. It has been shown that microgravity causes significant changes in biomechanical and electromyographic characteristics of walking, such as a decrease in the amplitude of angular displacement in leg joints, a decrease in the double step length, and an increase in the electromyographic costs of locomotion. It has been also shown that interval locomotor physical training, such as alternation of running and walking, in prolonged space flights prevents an increase in the physiological costs of locomototions after a space flight and provides more efficient maintenance of the neuromuscular system’s performance after a flight. Cosmonauts who performed interval locomotor training had fewer changes in biomechanical and electromyographic characteristics of walking.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have