Abstract

BackgroundIn 2006, severe outbreaks of Aedes aegypti-transmitted chikungunya occurred in villages in Karnataka, South India. We evaluated the effectiveness of combined information, education and communication (IEC) campaigns using two potential poeciliid larvivorous fish guppy (Poecilia reticulata) and mosquitofish (Gambusia affinis), in indoor cement tanks for Aedes larval control.MethodsTrials were conducted in two villages (Domatmari and Srinivaspura) in Tumkur District from March to May 2006 for Poecilia and one village (Balmanda) in Kolar District from July to October 2006 for Gambusia. A survey on knowledge, attitude and practice (KAP) on chikungunya was initially conducted and IEC campaigns were performed before and after fish release in Domatmari (IEC alone, followed by IEC + Poecilia) and Balmanda (IEC + Gambusia). In Srinivaspura, IEC was not conducted. Larval surveys were conducted at the baseline followed by one-week and one-month post-intervention periods. The impact of fish on Aedes larvae and disease was assessed based on baseline and post-intervention observations.ResultsOnly 18% of respondents knew of the role of mosquitoes in fever outbreaks, while almost all (n = 50 each) gained new knowledge from the IEC campaigns. In Domatmari, IEC alone was not effective (OR 0.54; p = 0.067). Indoor cement tanks were the most preferred Ae. aegypti breeding habitat (86.9%), and had a significant impact on Aedes breeding (Breteau Index) in all villages in the one-week period (p < 0.001). In the one-month period, the impact was most sustained in Domatmari (OR 1.58, p < 0.001) then Srinivaspura (OR 0.45, p = 0.063) and Balmanda (OR 0.51, p = 0.067). After fish introductions, chikungunya cases were reduced by 99.87% in Domatmari, 65.48% in Srinivaspura and 68.51% in Balmanda.ConclusionsPoecilia exhibited greater survival rates than Gambusia (86.04 vs.16.03%) in cement tanks. Neither IEC nor Poecilia alone was effective against Aedes (p > 0.05). We conclude that Poecilia + IEC is an effective intervention strategy. The operational cost was 0.50 (US$ 0.011, 1 US$= 47) per capita per application. Proper water storage practices, focused IEC with Poecilia introductions and vector sanitation involving the local administration and community, is suggested as the best strategy for Aedes control.

Highlights

  • In 2006, severe outbreaks of Aedes aegypti-transmitted chikungunya occurred in villages in Karnataka, South India

  • Based on our previous experience using two potential poeciliid larvivorous fish guppy (Poecilia reticulata) and mosquitofish (Gambusia affinis) for malaria control in Karnataka [4,6], we aimed to conduct two small-scale community-based feasibility studies combined with information, education and communication (IEC) to test the comparative efficacy of these fish in containing Ae. aegypti larval infestation and reducing chikungunya

  • Two-thirds of households stored water in indoor cement tanks, which were cleaned less than once a week, and 78% of the respondents covered the water storage containers

Read more

Summary

Introduction

In 2006, severe outbreaks of Aedes aegypti-transmitted chikungunya occurred in villages in Karnataka, South India. We evaluated the effectiveness of combined information, education and communication (IEC) campaigns using two potential poeciliid larvivorous fish guppy (Poecilia reticulata) and mosquitofish (Gambusia affinis), in indoor cement tanks for Aedes larval control. Chikungunya is a rare arboviral infection transmitted by Aedes mosquitoes. It shares the same vector and geographical. Based on our previous experience using two potential poeciliid larvivorous fish guppy (Poecilia reticulata) and mosquitofish (Gambusia affinis) for malaria control in Karnataka [4,6], we aimed to conduct two small-scale community-based feasibility studies combined with information, education and communication (IEC) to test the comparative efficacy of these fish in containing Ae. aegypti larval infestation and reducing chikungunya. Use of Poecilia fish combined with IEC offered the most effective means of controlling Aedes mosquito populations in our study

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call