Abstract

BackgroundThe maintenance of species and the promotion of speciation are closely related to chromosomal rearrangements throughout evolution. Decapoda represents the most species-rich order among crustaceans and, despite its ecological and economic importance, little is known about decapod karyology. We aim at cytogenetically characterizing two sympatric prawn species.ResultsAnalysis of mitotic metaphases and meiotic diakinesis of the common prawn Palaemon serratus and the rockpool prawn P. elegans, revealed considerable differences between their karyotypes including chromosome numbers and sex determination systems. The cytogenetic data for P. serratus showed a diploid number of 56 and the putative absence of heteromorphic sex chromosomes. However, the diploid chromosome number in P. elegans was 90 for females and 89 for males. The karyotype of the females consisted of the three largest acrocentric pairs and 42 submetacentric and metacentric pairs, while the karyotype of the males comprised a clearly identifiable large metacentric chromosome and two acrocentric pairs as well as the smaller 42 pairs. These results highlight the presence of the X1X1X2X2/X1X2Y multiple sex chromosome system in P. elegans, which constitute the only sexual system for Decapoda reported cytogenetically using modern techniques. The origin of this sex chromosome system is discussed. We hypothesize that the chromosome evolution within the genus could involve several fusion events giving rise to a reduction on the chromosome number in P. serratus. In both species, the major ribosomal genes were located in two chromosome pairs and hybridization signals of the telomeric sequences (TTAGGG)n were visualized at the telomeres of all chromosomes. C-banding revealed that, when present, constitutive heterochromatin had a predominantly telomeric distribution and no centromeric constitutive heterochromatin was observed.ConclusionsAlthough more comparative cytogenetic analyses are needed to clarify our hypotheses, the findings of this work indicate that the prawns of the genus Palaemon represent a promising model among Decapoda representatives to investigate the karyotype evolution and the patterns of sex chromosome differentiation.

Highlights

  • The maintenance of species and the promotion of speciation are closely related to chromosomal rearrangements throughout evolution

  • Karyotypes, heterochromatin distribution and Fluorochrome staining Mitotic and meiotic metaphases were obtained from 18 P. elegans specimens (8 females and 10 males) and 10 P. serratus specimens (6 females and 4 males)

  • Chromosome number and karyotypes The diploid chromosome number obtained in this study for P. elegans falls within the range of the published chromosome numbers in other members of the family Palaemonidae, with P. serratus displaying the lowest number in the family (2n = 56)

Read more

Summary

Introduction

The maintenance of species and the promotion of speciation are closely related to chromosomal rearrangements throughout evolution. Despite the importance of this group, the limited knowledge of decapod crustacean karyology constitutes an obstacle to elucidate different modes of sex determination, the occurrence of chromosomal rearrangements along their evolution or clarify phylogenetic relationships between related species. To our knowledge, during the last 25 years karyological data have only been reported in 46 species of decapods belonging to 10 families (for a review, see [5]). The family Palaemonidae comprises 981 species [7] of which only 13 belonging to three genera (Palaemon, Exopalaemon and Macrobrachium) have been studied at the cytogenetic level. These species show a wide karyotypic diversity and remarkable differences in their diploid chromosome number (Table 1).

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call