Abstract

The objective of this paper was to quantify and compare the environmental impacts associated with alternative designs of typical North American low and mid-rise buildings. Two scenarios were considered: a traditional structural steel frame or an all-wood mass timber design, utilizing engineered wood products for both gravity and lateral load resistance. The boundary of the quantitative analysis was cradle-to-grave with considerations taken to discuss end-of-life and material reuse scenarios. The TRACI methodology was followed to conduct a Life Cycle Impact Assessment (LCIA) analysis that translates building quantities to environmental impact indicators using the Athena Impact Estimator for Buildings Life Cycle analysis software tool and Athena’s Life Cycle Inventory database. The results of the analysis show that mass timber buildings have an advantage with respect to several environmental impact categories, including eutrophication potential, human health particulate, and global warming potential where a 31% to 41% reduction was found from mass timber to steel designs, neglecting potential carbon sequestration benefits from the timber products. However, it was also found that the steel buildings have a lower impact with respect to the environmental impact categories of smog potential, acidification potential, and ozone depletion potential, where a 48% to 58% reduction was found from the steel to the mass timber building designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.