Abstract
BackgroundBoth brucellosis and tuberculosis are chronic-debilitating systemic granulomatous diseases with a high incidence in many countries in Africa, Central and South America, the Middle East and the Indian subcontinent. Certain focal complications of brucellosis and extrapulmonary tuberculosis are very difficult to differentiate clinically, biologically and radiologically. As the conventional microbiological methods for the diagnosis of the two diseases have many limitations, as well as being time-consuming, multiplex real time PCR (M RT-PCR) could be a promising and practical approach to hasten the differential diagnosis and improve prognosis.Methodology/Principal FindingsWe designed a SYBR Green single-tube multiplex real-time PCR protocol targeting bcsp31 and the IS711 sequence detecting all pathogenic species and biovars of Brucella genus, the IS6110 sequence detecting Mycobacterium genus, and the intergenic region senX3-regX3 specifically detecting Mycobacterium tuberculosis complex. The diagnostic yield of the M RT-PCR with the three pairs of resultant amplicons was then analyzed in 91 clinical samples corresponding to 30 patients with focal complications of brucellosis, 24 patients with extrapulmonary tuberculosis, and 36 patients (Control Group) with different infectious, autoimmune or neoplastic diseases. Thirty-five patients had vertebral osteomyelitis, 21 subacute or chronic meningitis or meningoencephalitis, 13 liver or splenic abscess, eight orchiepididymitis, seven subacute or chronic arthritis, and the remaining seven samples were from different locations. Of the three pairs of amplicons (senX3-regX3+ bcsp3, senX3-regX3+ IS711 and IS6110+ IS711) only senX3-regX3+ IS711 was 100% specific for both the Brucella genus and M. tuberculosis complex. For all the clinical samples studied, the overall sensitivity, specificity, and positive and negative predictive values of the M RT-PCR assay were 89.1%, 100%, 85.7% and 100%, respectively, with an accuracy of 93.4%, (95% CI, 88.3—96.5%).Conclusions/SignificanceIn this study, a M RT-PCR strategy with species-specific primers based on senX3-regX3+IS711 sequences proved to be a sensitive and specific test, useful for the highly efficient detection of M. tuberculosis and Brucella spp in very different clinical samples. It thus represents an advance in the differential diagnosis between some forms of extrapulmonary tuberculosis and focal complications of brucellosis.
Highlights
Brucellosis remains one of the most widespread anthropozoonoses in the world, especially in the Mediterranean basin, the Middle East, India, Mexico and some countries of Central and South America [1]
We developed and evaluated the results of several multiplex real-time polymerase chain reaction (PCR) strategies for the rapid differential diagnosis between extrapulmonary tuberculosis and focal complications of brucellosis
Multiplex real-time PCR targeting of SenX3-RegX3+IS711 sequences showed a sensitivity of 89.1% and a specificity of 100% when applied to 91 clinical specimens. These findings provide solid evidence suggesting that multiplex real-time PCR could be a useful tool to reduce the time required for the differential diagnosis between extrapulmonary tuberculosis and complicated brucellosis, thereby improving prognosis
Summary
Brucellosis remains one of the most widespread anthropozoonoses in the world, especially in the Mediterranean basin, the Middle East, India, Mexico and some countries of Central and South America [1]. Much evidence supports the conclusion that in countries without strong health systems, official data likely underestimate the true burden [2]. The global burden of tuberculosis (TBC) remains enormous [5]. In 2011, there were an estimated 8.7 million new cases and 1.4 million people died from TBC [6]. Both brucellosis and tuberculosis are chronic-debilitating systemic granulomatous diseases with a high incidence in many countries in Africa, Central and South America, the Middle East and the Indian subcontinent. As the conventional microbiological methods for the diagnosis of the two diseases have many limitations, as well as being time-consuming, multiplex real time PCR (M RT-PCR) could be a promising and practical approach to hasten the differential diagnosis and improve prognosis
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have