Abstract

Euphorbia is one of the largest genera in the Euphorbiaceae family, comprising 2000 species possessing commercial, medicinal, and ornamental importance. However, there are very little data available on their molecular phylogeny and genomics, and uncertainties still exist at a taxonomic level. Herein, we sequence the complete chloroplast (cp) genomes of two species, E. larica and E. smithii, of the genus Euphorbia through next-generation sequencing and perform a comparative analysis with nine related genomes in the family. The results revealed that the cp genomes had similar quadripartite structure, gene content, and genome organization with previously reported genomes from the same family. The size of cp genomes ranged from 162,172 to 162,358 bp with 132 and 133 genes, 8 rRNAs, 39 tRNA in E. smithii and E. larica, respectively. The numbers of protein-coding genes were 85 and 86, with each containing 19 introns. The four-junction regions were studied and results reveal that rps19 was present at JLB (large single copy region and inverted repeat b junction) in E. larica where its complete presence was located in the IRb (inverted repeat b) region in E. smithii. The sequence comparison revealed that highly divergent regions in rpoC1, rpocB, ycf3, clpP, petD, ycf1, and ndhF of the cp genomes might provide better understanding of phylogenetic inferences in the Euphorbiaceae and order Malpighiales. Phylogenetic analyses of this study illustrate sister clades of E. smithii with E. tricullii and these species form a monophyletic clade with E. larica. The current study might help us to understand the genome architecture, genetic diversity among populations, and evolutionary depiction in the genera.

Highlights

  • Plants have chloroplasts that help in photosynthesis [1]

  • The genomic component of cp is composed of circular and double-stranded DNA molecules [2]. It is very essential for fatty acids, starch, and pigments biosynthesis [3]

  • The chloroplast contains its own independent genomic component, which is highly conserved in angiosperms

Read more

Summary

Introduction

Plants have chloroplasts (cp) that help in photosynthesis [1]. The genomic component of cp is composed of circular and double-stranded DNA molecules [2]. It is very essential for fatty acids, starch, and pigments biosynthesis [3]. The chloroplast contains its own independent genomic component, which is highly conserved in angiosperms. The chloroplast genome possesses certain characteristics such as small single copies, multiple copies, and a simple structure [4]. Unlike the other genomes, such as the nuclear genome, which has more repetitive sequences, the mitochondrial genome in which frequent rearrangements of nucleotide occur, the chloroplast genome is conservative [5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.