Abstract

Bone marrow is a major source of mesenchymal stem cells (MSC), which are used in tissue engineering and other autologous stem cell therapies. Studies designed to use large canine models and translate the results to human practice must take into account the ex vivo and in vitro differences in the bone marrow samples. A set of morphological and physiological markers was used to compare MSC derived from canine and human bone marrow. Despite anticlotting treatment, frequent bone marrow clotting was a problem with canine samples, so we developed a protocol for enzymatic digestion of undesirable clots. We compared colony forming units (CFU) assay, population doubling time (PDT), senescenceassociated β-galactosidase (SA-β-Gal) activity, as well as the ability of cells to differentiate to osteogenic, adipogenic and chondrogenic phenotypes. Urokinase digestion resulted in recovery of MSC: 4-fold more CFU from canine and 1.6-fold more from human samples when compared to untreated samples. Canine MSC were less robust in vitro – they divided actively only for four weeks in culture, while human cells divided for longer than eight weeks. After six weeks in culture, canine MSC underwent 17 population doublings of while human cells reached 26. The percentage of senescent cells increased linearly with time, but with a faster rate in canine MSC. Human and canine MSC underwent differentiation to all lineages; however canine MSC had generally lower differentiation potential. In conclusion, the discrepancy between canine and human cultures must be considered in future MSC-based therapies based on dogs as animal model.

Highlights

  • Nowadays the use of mesenchymal stem cells (MSC) is a corner stone in many translational medicine and tissue engineering strategies

  • Despite immediate transfer to anticoagulation solution during isolation of MSC from canine bone marrow, we found that 74% of canine bone marrow samples contained clots, against only 1% of human bone marrow samples (Figure 1)

  • Since we found that bone marrow clots absorbed a large number of cells, we tested the urokinase protocol on clotted canine and human bone marrow samples to increase MSC yields

Read more

Summary

Introduction

Nowadays the use of mesenchymal stem cells (MSC) is a corner stone in many translational medicine and tissue engineering strategies. MSC characteristics to differentiate into various cell types [1], migrate, engraft and have anti-inflammatory effects [2,3] reveal their potential for autologous therapies. These cells have found their way into clinical trials for bone and cartilage repair, heart and liver disease as well as for graft versus host disease [4,5]. Large dogs are main candidates as potential animal model for human disease research due to their characteristics: (1) relative long life expectancy, (2) large body mass and (3) natural development of diseases that affect human beings. In the field of degenerative intervertebral disc disease, canine models spontaneously develop the disease with ageing and they follow the same medical and surgical treatments as humans [9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call