Abstract

The growth of the world population leads to an increase in demand for food consumption. Along with the projected reduction in demand for meat products, a search is underway for a new type of food ("novel food"), one of the promising options for which are insects. In 2023 the European Commission has registered flour made from house cricket (Acheta domesticus) as a "novel food" for human consumption. Currently, the amino acid composition of both new types of food and the diet that includes them is not regulated. Accordingly, the potential amino acid imbalance in the diet when entomoprotein is included need to be further investigated. The aim of the study was to characterize the amino acid composition of a simulated diet using protein obtained from house cricket. Material and methods. To assess the balance of diets in terms of amino acid composition, a comparative analysis was made of the actual diet containing protein from traditional foods (scenario 1) and the diet with the likely replacement of beef, pork and poultry with a product containing A. domesticus protein (entomoprotein) (scenario 2). The volume of food consumption has been calculated based on the results of the assessment of a sample survey of household budgets. The study included foods with an established value of annual consumption, that was calculated as daily consumption. The content of essential amino acids in food sources of protein, as well as in the domestic cricket protein, was evaluated using the data from relevant sources. Dietary balance was assessed by calculating its digestibility using data on amino acid scoring, the utility of essential amino acids, the excess content of individual essential amino acids, and the comparable excess content of essential amino acids. Results. We determined the daily consumption volumes of basic foods, formed consumption scenarios, including with the potential use of a protein product based on entomoprotein. Comparative analysis of the amino acid composition of the diet showed significantly higher content (from 1.4 up to 2.9 times) of amino acids in the diet in scenario 2. The results of calculating the amino acid score and utility coefficient showed that a diet using entomoprotein could provide a better usage of amino acids for protein synthesis compared to the «traditional» diet, however, the digestibility of protein from the traditional diet is higher compared to entomoprotein (96.8 vs 89.1%). Conclusion. Despite the fact that the utility of essential amino acids in the scenario of replacing meat products with a product containing A. domesticus entomoprotein is higher, while the digestibility of protein is lower, the differences identified are insignificant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call