Abstract
Because CO2 uptake by cacti can be limited by low levels of photosynthetically active radiation (PAR) and because plant form affects PAR interception, various cactus forms were studied using a computer model, field measurements, and laboratory phototropic studies. Model predictions indicated that CO2 uptake by individual stems at an equinox was greatest when the stems were vertical, but at the summer and the winter solstice CO2 uptake was greatest for stems tilted 30° away from the equator. Stem tilting depended on form and taxonomic group; four barrel cacti in Ferocactus and in Copiapoa and four cylindropuntias in Opuntia tilted toward a horizontal light beam by an average of 18°, 48°, and 52°, respectively, after growth periods of 1 to 4 yr. In contrast, three columnar species showed no significant phototropic response, perhaps because structural stability requires their massive stems to be erect. Field plants of the dense, multiple-stemmed shrub Opuntia echinocarpa had stems which tended to radiate outward from the plant base, and, although this would not influence the total PAR intercepted, it would result in a more uniform PAR distribution and hence higher CO2 uptake. For O. echinocarpa and the even denser, mound-forming Echinocereus engelmannii, PAR and chlorophyll decreased approximately exponentially with depth into the canopy. The canopies of O. echinocarpa and other cylindropuntias did not extend to the ground; in certain species, such truncation apparently resulted from a combination of very low PAR levels just below the lower canopy edge and the light-dependent growth responses of individual stems. In addition, although the canopy surfaces of O. echinocarpa and O. acanthocarpa tilted toward the equator by about 30°, the canopies of other cylindropuntias tilted less or not at all; the computer model predicted that a 30° tilt would decrease interstem shading, increase daily PAR, and increase nocturnal CO2 uptake by as much as 54, 26, and 24%, respectively. Not only can the shape of cacti be affected by PAR, but also shape influences PAR interception and hence CO2 uptake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.