Abstract

Field measurements and a computer model were used to determine how stem shape and arrangement of stems in space affect interception of photosynthetically active radiation (PAR) and CO2 uptake under otherwise optimal conditions for four species of columnar cacti (Carnegiea gigantea, Lophocereus schottii, Pachycereus pringlei, and Stenocereus thurberi). In simulations where the number of widely spaced stems was increased from 1 to 19 but plant volume remained constant, surface area and PAR interception increased, leading to 3-fold increases in whole-plant CO2 uptake. Increasing the distance between stems from 0 cm to infinity decreased self-shading and increased predicted CO2 uptake 4-fold. Stem length, diam, ribbing characteristics, and spine coverage also influenced PAR interception. The model indicated that the observed higher frequency of branches on the south side of the trunk of C. gigantea had only a slight, though positive, effect on CO2 uptake for single-branched plants. Because of its greater surface area (A), a five-stemmed plant of C. gigantea typical for a field site near Tucson, Arizona was predicted to have 52% more CO2 uptake than a single-stemmed plant of the same volume (V). Although large A/V decreases water storage per unit transpiring area, whole-plant CO2 uptake can be increased when A/V is increased by branching for these constant-volume plants. However, the stems must be arranged to avoid excessive self-shading and thus keep the area below PAR compensation small.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call