Abstract

Exposure of the soil environment to metal nanoparticles (MNPs) has been extensive because of their indiscriminate use and the disposal of MNP products in various applications. In MNP-amended soil, various crops can absorb the nanoparticles, and accumulation of the MNPs in farm products has potential risks for bioconcentration in humans and livestock. Here, we evaluated the comparative bioaccumulation, translocation, and phytotoxicity of MNPs (ZnO and CuO NPs) and metal ions (Zn(NO3)2 and Cu(NO3)2) in four different crops, namely lettuce, radish, bok choy, and tomato. We carried out pot experiments to evaluate the phytotoxicity in the crops from the presence of MNPs and metal ions. Phytotoxicity from different treatments differed depending on the plant species, and metal types. In addition, exposure to Zn and Cu showed positive dose-dependent effects on their bioaccumulation in each crop. However, there were no significant differences in metal bioaccumulation depending on whether the crops were exposed to MNPs or metal ions. By calculating the bioconcentration factor (BCF) and translocation factor (TF), we were able to estimate the biological uptake and translocation abilities of MNPs and metal ions for each crop. It was found that lettuce and radish had greater BCFs than bok choy and tomato, while bok choy and tomato had higher TFs. Also, the uptake and translocation of Zn were better than those of Cu. However, the values for BCF and TF for each crop showed no significant differences between MNP and metal ion exposure. A micro X-ray fluorescence (μ-XRF) spectrometer analysis demonstrated that only Zn elements appeared in the primary veins and edges of all leaves and the storage root of radish. Our study aims to estimate bioaccumulation, translocation, and the implied potential risks from MNPs accumulated in different plant species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call