Abstract
Numerical studies of the flow past a circular cylinder at Reynolds number $$1.4\times 10^{5}$$ and NACA0021 airfoil at the angle of attack $$60^{\circ }$$ have been carried out by scale-adaptive simulation (SAS) and detached eddy simulation (DES), in comparison with the existing experimental data. The new version of the model developed by Egorov and Menter is assessed, and advantages and disadvantages of the SAS simulation are analyzed in detail to provide guidance for industrial application in the future. Moreover, the mechanism of the scale-adaptive characteristics in separated regions is discussed, which is obscure in previous analyses. It is concluded that: the mean flow properties satisfactorily agree with the experimental results for the SAS simulation, although the prediction of the second order turbulent statistics in the near wake region is just reasonable. The SAS model can produce a larger magnitude of the turbulent kinetic energy in the recirculation bubble, and, consequently, a smaller recirculation region and a more rapid recovery of the mean velocity outside the recirculation region than the DES approach with the same grid resolution. The vortex shedding is slightly less irregular with the SAS model than with the DES approach, probably due to the higher dissipation of the SAS simulation under the condition of the coarse mesh.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have