Abstract

Probabilistic slope stability analyses are often preferable to deterministic methods when soils are inherently heterogeneous, or the reliability of geotechnical parameters is largely unknown. These methods are suitable for evaluating the risk of slope failure by producing a range of potential scenarios for the slope stability factor of safety. Several probabilistic methods including the Point Estimate Method, Monte Carlo Method and Random Finite Element Method, can be combined with the Finite Element technique. In this study, various shear strength distributions are considered for three different probabilistic Finite Element Methods to determine Factor of Safety and Probability of Failure distributions, based on the associated method of slope stability analysis. Results are presented for a case study of an Australian open-cut coal mine, with a range of shear strength parameter distributions for coal and interseam cohesive materials considered. Coal and interseam shear strength parameters are varied independently, to determine the effects of each material on the slope Factor of Safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.