Abstract

Silicon carbide (SiC) MOSFETs and gallium nitride (GaN) high-electron mobility transistors are perceived as future replacements for Si IGBTs and MOSFETs in medium- and low-voltage drives due to their low conduction and switching losses. However, it is widely believed that the already significant conducted common-mode (CM) electromagnetic interference (EMI) emission of motor drives will be further exacerbated by the high-speed switching operation of these new devices. Hence, this paper investigates and quantifies the increase in the conducted CM EMI emission of a pulse width modulation inverter-based motor drive when SiC and GaN devices are adopted. Through an analytical approach, the results reveal that the influence of dv/dt on the conducted CM emission is generally limited. On the other hand, the influence of switching frequency is more significant. Lab tests are also conducted to verify the analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.