Abstract
ObjectiveClinical manifestations of Gram-negative bacteria mediated diseases can be influenced by how the host senses their major microbe-associated molecular pattern, the cell wall lipopolysaccharide (LPS). Keystone periodontal pathogens can produce a heterogeneous population of LPS molecules, with strikingly different host-microbiome interactions and immune outcomes. DesignStructure-function correlations of salivary LPS extracts in patients with periodontitis before and after periodontal treatment and healthy volunteers were analysed by comparing its lipid A and carbohydrate chain chemical structure and evaluating its endotoxin activity and inflammatory potential. ResultsSalivary LPS extracts from periodontitis patients were characterised by high m/z lipid A mass-spectrometry peaks, corresponding to over-acylated and phosphorylated lipid A ions and by a combination of rough and smooth LPS carbohydrate moieties. In contrast, gingival health was defined by the predominance of low m/z lipid A peaks, consistent with under-acylated and hypo-phosphorylated lipid A molecular signatures, with long and intermediate carbohydrate chains as determined by silver staining. Total, diseased salivary LPS extracts were stronger inducers of the recombinant factor C assay and triggered significantly higher levels of TNF-α, IL-8 and IP-10 production in THP-1 cells, compared to almost immunosilent healthy samples. Interestingly, salivary LPS architecture, endotoxin activity, and inflammatory potential were well conserved after periodontal therapy and showed similarities to diseased samples. ConclusionsThis study sheds new light on molecular pathogenic mechanisms of oral dysbiotic communities and indicates that the regulation of LPS chemical structure is an important mechanism that drives oral bacteria-host immune system interactions into either a symbiotic or pathogenic relationship.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.