Abstract

P-type ATPases are integral membrane transporters that play important roles in transmembrane transport in plants. However, a comprehensive analysis of the P-type ATPase gene family has not been conducted in Chinese white pear (Pyrus bretschneideri) or other Rosaceae species. Here, we identified 419 P-type ATPase genes from seven Rosaceae species (Pyrus bretschneideri, Malus domestica, Prunus persica, Fragaria vesca, Prunus mume, Pyrus communis and Pyrus betulifolia). Structural and phylogenetic analyses revealed that P-type ATPase genes can be divided into five subfamilies. Different subfamilies have different conserved motifs and cis-acting elements, which may lead to functional divergence within one gene family. Dispersed duplication and whole-genome duplication may play critical roles in the expansion of the P-type ATPase family. Purifying selection was the primary force driving the evolution of P-type ATPase family genes. Based on the dynamic transcriptome analysis and transient transformation of Chinese white pear fruit, Pbr029767.1 in the P3A subfamily were found to be associated with malate accumulation during pear fruit development. Using a co-expression network, we identified several transcription factors that may have regulatory relationships with the P-type ATPase gene family. Overall, this study lays a solid foundation for understanding the evolution and functions of P-type ATPase genes in Chinese white pear and six other Rosaceae species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.