Abstract

This paper presents a comprehensive overview of leakage reduction techniques prevailing in Static Random Access Memories (SRAMs) by classifying them in three categories namely latch, bitline and read port. The performance of the techniques are evaluated in terms of leakage reduction capability along with the impact on read performance and hold stability through extensive simulative investigations at 32 nm technology node by taking conventional SRAM cell as reference. Further, as SRAMs are susceptible to inter-die as well as intra-die process variations, the performance at different PVT corners is also captured to demonstrate the efficacy of each technique under PVT variations. It is found that among the techniques used for reducing latch leakages, Multi-threshold CMOS technique possess the highest leakage reduction capabilities followed by Drowsy mode and Substrate-bias techniques. The results also indicate that Negative word line technique is more effective at low supply voltages whereas the Leakage biased bitline technique is more effective at high supply voltages for reducing bitline leakages. Amongst the read port leakage reduction techniques, Stack-effect and Dynamic control of power supply rail techniques are capable of suppressing the leakages at high voltages whereas Virtual cell ground technique is more efficacious at low voltages. The impact of technology scaling on SRAM cell performance with leakage reduction techniques is also studied. For the sake of completeness, suggestions are put forward for adopting a particular technique to address leakages at latch, bitline and read port levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call