Abstract

The co-combustion of diesel with alcohol fuels in a compression ignition dual fuel engine is one of the ways of using alternative fuels to power combustion engines. Scientific explorations in this respect should not only concern the combustion process in one engine cycle, which is most often not representative for a longer engine life, but should also include an analysis of multiple cycles, which would allow for indicating reliable parameters of engine operation and its stability. This paper presents experimental examinations of a CI engine with a dual fuel system, in which co-combustion was performed for diesel and two alcohol fuels (methanol and ethanol) with energy contents of 20%, 30%, 40% and 50%. The research included the analysis of the combustion process and the analysis of cycle-by-cycle variation of the 200 subsequent engine operation cycles. It was shown that the presence and increase in the share of methanol and ethanol used for co-combustion with diesel fuel causes an increase in ignition delay and increases the heat release rate and maximum combustion pressure values. A larger ignition delay is observed for co-combustion with methanol. Based on changes in the coefficient of variation of the indicated mean effective pressure (COVIMEP) and the function of probability density of the indicated mean effective pressure (f(IMEP)), prepared for a series of engine operation cycles, it can be stated that the increase in the percentage of alcohol fuel used for co-combustion with diesel fuel does not impair combustion stability. For the highest percentage of alcohol fuel (50%), the co-combustion of diesel with methanol shows a better stability.

Highlights

  • Compression ignition engines (CI) are commonly used in transport, industrial machines and in the agricultural economy due to their long life time durability

  • The function of probability density of the indicated mean effective pressure (f(IMEP)), prepared for a series of engine operation cycles, it can be stated that the increase in the percentage of alcohol fuel used for co-combustion with diesel fuel does not impair combustion stability

  • This paper presents experimental examinations of a CI engine with dual fuel system, in which co-combustion was performed for diesel and two alcohol fuels with energy contents of 20%, 30%, 40% and 50%

Read more

Summary

Introduction

Compression ignition engines (CI) are commonly used in transport, industrial machines and in the agricultural economy due to their long life time durability. In paper [3] authors presented results of an investigation of the emissions of dual fuel CI engine. Emissions of NOx and soot should be reduced because these are harmful to human health and environment as well [4]. Another motivation for these activities is the European Union Directive 2009/28/EC obliging the use of a 20% share of renewable biofuels in overall transport and diesel fuel consumption by 2020 [5]. One of the reasons for using biofuels is their smaller negative impact on the environment through lower greenhouse gas emissions, while another is in order to develop diversification, which can increase energy independence.

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.