Abstract

Due to rapid advancement in technology, speaker recognition systems become more robust and user friendly. The idea is to study and analyse the speech signal based on feature extraction method. This paper compares the performance of Mel-Frequency Cepstral Coefficient (MFCC) and PLP feature extraction with voice activity detection (VAD) technique. Vector Quantisation approach is used for features matching to select the combination which gives highest accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.