Abstract
A comparative study of single-stage fermentation (wet or dry) and two-stage (wet-dry and dry-wet) fermentation systems was carried out under medium temperature conditions. The effect of the length of the first wet or dry fermentation stage (5-, 10-, 15-, 20-, and 25-d) in the two-stage anaerobic fermentation was investigated. The results showed that the gas production of wet fermentation and two-stage wet-dry fermentation was better than that of the dry fermentation and two-stage dry-wet fermentation. The cumulative gas production increased gradually with increased stage conversion times for the two-stage wet-dry fermentation. The gas production for the 20-d experimental group of the two-stage wet-dry fermentation system was the best. The cumulative biogas production in the anaerobic fermentation of straw correlated significantly with the changes in the degradation rates of volatile solids, cellulose, and hemicellulose (P < 0.01). The kinetic fitting analysis showed that the Reaction Curve (RC) model was more suitable for data modeling of the single-stage wet fermentation and two-stage wet-dry fermentation with straw than the Modified Gompertz (GM) and Modified Logistic (LM) models. The results of this study provided a theoretical basis for choosing a fermentation process for large-scale biogas production with straw.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.