Abstract
Background: Manually labeling sleep stages is time-consuming and labor-intensive, making automatic sleep staging methods crucial for practical sleep monitoring. While both single- and multi-channel data are commonly used in automatic sleep staging, limited research has adequately investigated the differences in their effectiveness. Methods: In this study, four public data sets-Sleep-SC, APPLES, SHHS1, and MrOS1-are utilized, and an advanced hybrid attention neural network composed of a multi-branch convolutional neural network and the multi-head attention mechanism is employed for automatic sleep staging. Results: The experimental results show that, for sleep staging using 2-5 classes, a combination of single-channel electroencephalography (EEG) and dual-channel electrooculography (EOG) consistently outperforms single-channel EEG with single-channel EOG, which in turn outperforms single-channel EEG or single-channel EOG alone. For instance, for five-class sleep staging using the MrOS1 data set, the combination of single-channel EEG and dual-channel EOG resulted in an accuracy of 87.18%, whereas the combination of single-channel EEG and single-channel EOG yielded an accuracy of 85.77%. In comparison, single-channel EEG alone achieved an accuracy of 85.25% and single-channel EOG alone achieved an accuracy of 83.66%. Conclusions: This study highlights the significance of combining EEG and EOG signals in automatic sleep staging, while also providing valuable insights for the channel design of portable sleep monitoring devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have