Abstract
Giant magnetoresistance (GMR) sensor strips are fabricated and modeled with the purpose of detecting a uniform distribution of Fe3O4 magnetic nanoparticles (MNPs) for biological application. We find that the free and fixed layers of GMR sensors play a dominant role in exciting the MNPs, and consequent MNP stray fields lead to increased free layer susceptibility. This result persists even when MNPs are confined to the interior of the sensing region but is enhanced when MNPs are allowed near exterior edges. Our analysis includes three different fabrication configurations on two different spin valve film stacks and agrees well with experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.