Abstract
We report a comparative study in which a single-molecule fluorescence resonance energy transfer approach was used to examine how the binding of two families of HIV-1 viral proteins to viral RNA hairpins locally changes the RNA secondary structures. The single-molecule fluorescence resonance energy transfer results indicate that the zinc finger protein (nucleocapsid) locally melts the TAR RNA and RRE-IIB RNA hairpins, whereas arginine-rich motif proteins (Tat and Rev) may strengthen the hairpin structures through specific binding interactions. Competition experiments show that Tat and Rev can effectively inhibit the nucleocapsid-chaperoned annealing of complementary DNA oligonucleotides to the TAR and RRE-IIB RNA hairpins, respectively. The competition binding data presented here suggest that the specific nucleic acid binding interactions of Tat and Rev can effectively compete with the general nucleic acid binding/chaperone functions of the nucleocapsid protein, and thus may in principle help regulate critical events during the HIV life cycle.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have