Abstract

This paper examines and compares regression and artificial neural network models used for the estimation of wind turbine power curves. First, characteristics of wind turbine power generation are investigated. Then, models for turbine power curve estimation using both regression and neural network methods are presented and compared. The parameter estimates for the regression model and training of the neural network are completed with the wind farm data, and the performances of the two models are studied. The regression model is shown to be function dependent, and the neural network model obtains its power curve estimation through learning. The neural network model is found to possess better performance than the regression model for turbine power curve estimation under complicated influence factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.