Abstract

Accurate estimation of glomerular filtration rate (GFR) is important in clinical practice. Current models derived from regression are limited by the imprecision of GFR estimates. We hypothesized that an artificial neural network (ANN) might improve the precision of GFR estimates. A study of diagnostic test accuracy. 1,230 patients with chronic kidney disease were enrolled, including the development cohort (n=581), internal validation cohort (n=278), and external validation cohort (n=371). Estimated GFR (eGFR) using a new ANN model and a new regression model using age, sex, and standardized serum creatinine level derived in the development and internal validation cohort, and the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) 2009 creatinine equation. Measured GFR (mGFR). GFR was measured using a diethylenetriaminepentaacetic acid renal dynamic imaging method. Serum creatinine was measured with an enzymatic method traceable to isotope-dilution mass spectrometry. In the external validation cohort, mean mGFR was 49±27 (SD) mL/min/1.73 m2 and biases (median difference between mGFR and eGFR) for the CKD-EPI, new regression, and new ANN models were 0.4, 1.5, and -0.5 mL/min/1.73 m2, respectively (P<0.001 and P=0.02 compared to CKD-EPI and P<0.001 comparing the new regression and ANN models). Precisions (IQRs for the difference) were 22.6, 14.9, and 15.6 mL/min/1.73 m2, respectively (P<0.001 for both compared to CKD-EPI and P<0.001 comparing the new ANN and new regression models). Accuracies (proportions of eGFRs not deviating >30% from mGFR) were 50.9%, 77.4%, and 78.7%, respectively (P<0.001 for both compared to CKD-EPI and P=0.5 comparing the new ANN and new regression models). Different methods for measuring GFR were a source of systematic bias in comparisons of new models to CKD-EPI, and both the derivation and validation cohorts consisted of a group of patients who were referred to the same institution. An ANN model using 3 variables did not perform better than a new regression model. Whether ANN can improve GFR estimation using more variables requires further investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.