Abstract

Cherry tomatoes (Solanum lycopersicum var. cerasiforme) are cultivated and consumed worldwide. While numerous cultivars have been bred to enhance fruit quality, few studies have comprehensively evaluated the fruit quality of cherry tomato cultivars. In this study, we assessed fruits of five cherry tomato cultivars (Qianxi, Fengjingling, Fushan88, Yanyu, and Qiyu) at the red ripe stage through detailed analysis of their physical traits, mineral compositions, antioxidant contents, and metabolite profiles. Significant variations were observed among the cultivars in terms of fruit size, shape, firmness, weight, glossiness, and sepal length, with each cultivar displaying unique attributes. Mineral analysis revealed distinct patterns of essential and trace element accumulation, with notable differences in calcium, sodium, manganese, and selenium concentrations. Fenjingling was identified as a selenium enriched cultivar. Analysis of antioxidant contents highlighted Yanyu as particularly rich in vitamin C and Fenjingling as having elevated antioxidant enzyme activities. Metabolomics analysis identified a total number of 3,396 annotated metabolites, and the five cultivars showed distinct metabolomics profiles. Amino acid analysis showed Fushan88 to possess a superior profile, while sweetness and tartness assessments indicated that Yanyu exhibited higher total soluble solids (TSS) and acidity. Notably, red cherry tomato cultivars (Fushan88, Yanyu, and Qiyu) accumulated significantly higher levels of eugenol and α-tomatine, compounds associated with undesirable flavors, compared to pink cultivars (Qianxi and Fengjingling). Taken together, our results provide novel insights into the physical traits, nutritional value, and flavor-associated metabolites of cherry tomatoes, offering knowledge that could be implemented for the breeding, cultivation, and marketing of cherry tomato cultivars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.