Abstract

Muscidae, commonly known as house flies and their close relatives, is one of the dipteran insects of recognized medical, veterinary, and ecological importance. Mitochondrial genomes (Mitogenomes) have been widely used for exploring phylogenetic analysis and taxonomic diagnosis due to the difficulty in distinguishing them morphologically. In this study, our complete mitogenomes of muscid flies were sequenced and aligned, which ranged from 15,117 bp (Synthesiomyia nudiseta) to 16,089 bp (Musca sorbens) in length, and contained a typical circular molecule comprising 13 protein-coding genes (PCGs), two ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs) and a non-coding control region. The order and orientation of genes were identical with that from the ancestral insects. The phylogenetic analysis based on the mitochondrial genes indicated that the subfamily relationships within Muscidae were reconstructed as (Mydaeinae (Muscinae (Reinwardtiinae + Azeliinae))). Similar tree topologies were recovered from both Maximum Likelihood (ML) and Bayesian Inference (BI) analysis. Furthermore, we compared the phylogenetic analyses that were constructed using internal transcribed spacer 2 (ITS2), elongation factor-1α (EF-1α), 13 PCGs and 13 PCGs + ITS2 + EF-1α, respectively. Combined analysis of nuclear gene partitions improved support and resolution for resulting topologies but the positions of branches were obviously inconsistent due to limited species. More mitogenomes should be sequenced representing various taxonomic levels, especially close related species, which will enhance our understanding of phylogenetic relationships among muscids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call