Abstract

Abstract Since 1926, the University of Minnesota herbaceous perennial breeding program has released N = 84 garden chrysanthemum cultivars (Dendranthema × grandiflora) with important traits for northern temperate climates, such as winter hardiness. Recent breeding objectives have identified the need for development of non-destructive phenotypic markers and destructive laboratory freezing tests for co-selection of cold tolerance in Dendranthema, Gaura, and other herbaceous perennial flower crops. Such methods have become critical to flower breeding programs in northern temperate regions during periods of above-average winter temperatures and minimal snow cover due to the ‘el Nino’ effect. Two different, destructive laboratory freezing tests were evaluated for their effectiveness in determining cold tolerance. Acclimated crowns of n = 6 garden chrysanthemum genotypes, ranging from hardy to non-hardy in USDA Z3-4, were used in Omega Block (using detached, emergent rhizomes) and chamber (using entire, intact crowns with emergent, non-emergent rhizomes) freezing test methods. Comparative winter survival in the field was monitored over locations and years. Cold tolerance was assessed at 0 to −12 °C with varying ramp and soak time periods. LT50 temperatures and number of living emergent rhizomes were also determined. Rhizome quality at 1, 3, and 5 cm depths was rated for regrowth on a 0 (dead) to 5 (undamaged) scale. The chamber freezing method was the most powerful to discern accurate LT50 values. Cold tolerant genotypes included ‘Duluth’ and Mn. Selection 98-89-7 (LT50 = −12 °C). Four genotypes were rated as non-hardy (LT50 = ≤−10 °C). Cold-tolerant genotypes also had significantly higher regrowth ratings for rhizomes at 1 and 3 cm depths. Future research will implement the chamber freezing method to assay the inheritance of winter hardiness in intact crowns of segregating populations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.