Abstract

The main purpose of identifying and locating the retina vessels is to specify from the fundus image the various tissues of the vascular structure, which can be wide or tight. The classification of vessels in the retinal image often confronts several challenges, such as the low contrast accompanying the fundus image, the inhomogeneity of the background lighting, and the noise. Moreover, fuzzy c-means (FCM) is one of the most frequently used algorithms for medical image segmentation due to its effectiveness. Hence, many FCM method derivatives have been developed to improve their noise robustness and time-consuming. This paper aims to analyze the performance of some improved FCM algorithms to recommend the best ones for the segmentation of retinal blood vessels. Eight derivatives of FCM algorithm are detained in this study: FCM, EnFCM, SFCM, FGFCM, FRFCM, DSFCM_N, FCM_SICM and SSFCA. The performance analysis is conducted from three viewpoints: noise robustness, blood vessels segmentation performance, and time-consuming. At first, the noise robustness of improved FCM clustering algorithms is evaluated using a synthetic image degraded by various types and levels of noise. Then, the ability of the selected algorithms to segment retinal blood vessels is assessed based on images from the DRIVE and STARE databases after a pre-processing phase. Finally, the time consumption of each algorithm is measured. The experiments demonstrate that the FRFCM and DSFCM_N algorithms achieve better results in terms of noise robustness and blood vessels segmentation. Regarding the running time, the FRFCM algorithm requires less time than other algorithms in the segmentation of retinal images. The results of this study are extensively discussed, and some suggestions are proposed at the end of this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call