Abstract
In this study, the performance of the Genetic Algorithm (GA) in optimizing the agricultural drone flight route was compared with the Greedy Algorithm, revealing that GA produce routes that are, on average, 17.44 % more efficient. This efficiency, measured over 500 generations in a static field model, suggests substantial potential for saving resources and time in agricultural operations. Despite the effectiveness of the GA, its computational intensity limits real-time field applications, but offers advantages in offline route planning for pre-mapped areas. A t-test between flight lengths created by the algorithms highlighted a significant difference, with a p-value of approximately 7.18×10−9, indicating the GA's superior performance. Future research should aim to bridge the gap between the simplified binary field model used in simulations and the complexities of real-world agricultural landscapes to improve the practical deployment of GAs in drone route optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.