Abstract

Energy must dissipate during a collision to prevent damage and injury. To reduce loss from collision, energy absorbers are used that dissipate energy upon deformation and folding to prevent damage to critical parts of a structure. In this paper, simple and multi-cell thin-walled tubes made from aluminum with triangular, square, hexagonal and octagonal sections were subjected to quasi-static loading. The experimental results were then compared with numerical simulations. The results showed that the energy absorption capacity of multi-cell sections is greater than for that of simple sections. Also, hexagonal and octagonal sections in a multi-cell configuration absorbed the greatest amounts of energy per unit of mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call