Abstract

Multi-cell tubes have been widely used in vehicle engineering for their excellent energy absorption capacity. In this paper, a group of bionic multi-cell tubes (BMCTs) with quadrilateral, hexagonal and octagonal sections were proposed. The BMCTs were constructed by filling the cylindrical tubes into different position of multi-cell tubes (MCTs), which was inspired by the microstructure of beetle forewings. The finite element (FE) models under axial impact loading were established and then validated by the Simplified Super Folding Element (SSFE) theory. The crashworthiness of different BMCTs and MCTs was compared, and the results showed that the sixth type of bionic multi-cell tube with octagonal section (O-BMCT-6) has the best crashing performance. Then, the multiobjective optimization design of O-BMCT-6 was conducted by using non-dominated sorting genetic algorithm II (NSGA-II) and radial basis function (RBF) metamodels. The optimal O-BMCT-6 showed superior crashworthiness and could be used as an energy absorber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call