Abstract

In this paper, we present the effects of different surface passivation types, one with SiNx and the other with polyimide (PI), on the dark (leakage) current of a GaAs-based avalanche photodiode. We identified that the reverse dark current originates from the surface, and not from the bulk, showing the nearly linear dependence on perimeters of active-mesa (A-M) up to 90% of breakdown voltage (Vbr). From the theoretical results, total dark current consists of generation–recombination (G–R), shunt and tunneling components from a surface and the avalanche gain component from a bulk for both passivation types. Although the bulk component of avalanche gain⋅bulk current generates the breakdown process, it appears only near Vbr (12.7 V) because of a very small bulk current of a few fA in theory. For a surface current, SiNx passivation has values two to eight times lower than PI passivation. The different behaviors of surface current between passivation types could be theoretically explained by quantitative description of the current components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.