Abstract
Vibration of manufacturing machine parts can be reduced by applying CFRP to precision machines. Recently, the use of 3D printers in manufacturing has increased. However, there are few studies on the vibration characteristics of 3D printed composite materials. The objective of this study is to analyze the vibration reduction effect of a 3D printed composite material used as a CFRP chuck adapter. The existing chuck adapter is made of steel. In this study, the vibration values for three types of CFRP, steel, and CFRP with steel chuck adapters are compared. The products were rotated at 10, 500, and 1000 rpm, and the vibration velocity and displacement were calculated as an average value after repeating each measurement 5 times. Vibration velocity was improved by up to 64% and displacement by up to 31.1%. These results can be usefully applied to other mechanical parts requiring vibration damping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.