Abstract
BackgroundPathogenesis and aetiology of systemic sclerosis (SSc) are currently unclear, thus rendering disease prognosis, diagnosis and treatment challenging. The aim of this study was to use paired skin biopsy samples from affected and unaffected areas of the same patient, in order to compare the proteomes and identify biomarkers and pathways which are associated with SSc pathogenesis.MethodsBiopsies were obtained from affected and unaffected skin areas of SSc patients. Samples were cryo-pulverised and proteins were extracted and analysed using mass spectrometry (MS) discovery analysis. Differentially expressed proteins were revealed after analysis with the Progenesis QIp software. Pathway analysis was performed using the Enrichr Web server. Using specific criteria, fifteen proteins were selected for further validation with targeted-MS analysis.ResultsProteomic analysis led to the identification and quantification of approximately 2000 non-redundant proteins. Statistical analysis showed that 169 of these proteins were significantly differentially expressed in affected versus unaffected tissues. Pathway analyses showed that these proteins are involved in multiple pathways that are associated with autoimmune diseases (AIDs) and fibrosis. Fifteen of these proteins were further investigated using targeted-MS approaches, and five of them were confirmed to be significantly differentially expressed in SSc affected versus unaffected skin biopsies.ConclusionUsing MS-based proteomics analysis of human skin biopsies from patients with SSc, we identified a number of proteins and pathways that might be involved in SSc progression and pathogenesis. Fifteen of these proteins were further validated, and results suggest that five of them may serve as potential biomarkers for SSc.
Highlights
Systemic sclerosis (SSc), known as scleroderma, refers to a systemic rheumatic disease that is generally classified as an autoimmune disease (AID) [1, 2]
Pathway analysis showed that several pathways are implicated/activated in systemic sclerosis (SSc) pathogenesis
3 (DDX55, PPID and COX6B1) out of 5 confirmed proteins have been associated with SSc for the first time in our study; these proteins could be novel biomarkers of the disease
Summary
Systemic sclerosis (SSc), known as scleroderma, refers to a systemic rheumatic disease that is generally classified as an autoimmune disease (AID) [1, 2] It is characterised by the three main pathological hallmarks: vasculopathy, immune system abnormalities and excessive deposition of collagen (fibrosis) in many tissues throughout the human body causing hardening and thickening [1, 3]. This disease is heterogeneous and multisystemic as symptoms vary among patients and several organs of the human body might be affected [3]. The aim of this study was to use paired skin biopsy samples from affected and unaffected areas of the same patient, in order to compare the proteomes and identify biomarkers and pathways which are associated with SSc pathogenesis
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have