Abstract
Conditioned pain modulation and exercise-induced hypoalgesia reflect inhibitory pain controls emanating from the brain. The aim of this study was to compare the extent of pain inhibition from exercise-induced hypoalgesia (isometric wall squat), conditioned pain modulation (cold-water immersion), and their combination (wall squat followed by cold water in fixed order) in healthy pain-free adults. Sixty-one participants (median age 21 years) completed 3 sessions (wall-squat, cold-water, and combined) in random order. Sessions were separated by at least a week. In each session, pressure-pain thresholds, single-pinprick-pain ratings, and pinprick-temporal summation of pain (the fifth minus the first) were obtained at quadriceps, forearms, and forehead, before and after wall squat and/or cold water. Each intervention inhibited pain to pressure (partial η2 = .26) and single pinprick (partial η2 = .16) to a similar extent; however, pressure-pain inhibition was negligible in the forehead. After adjusting for age and sex, single-pinprick-pain inhibition in the forehead induced by wall squat was associated with that induced by cold water (adjusted R2 = .15; P = .007), and stronger pain inhibition was predicted by a higher thigh-pain rating to wall squat (adjusted R2 = .10; P = .027). Neither intervention affected pinprick-temporal summation of pain. Together, the findings suggest that pain-inhibitory effects of exercise-induced hypoalgesia and conditioned pain modulation may overlap when exercise is at least moderately painful (6/10 intensity). Pressure pain in body regions remote from the exercised or conditioned sites may be weakly modulated. PerspectiveThe current findings suggest that pain-inhibitory effects induced by painful wall squat and by cold-water immersion may overlap. The magnitude of pain inhibition in the forehead remote from the exercised thigh or the conditioned foot appears smaller, which could be examined further in future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.