Abstract
AbstractWe provide two proofs of the compactness theorem for extensions of first‐order logic based on team semantics. First, we build upon Lück's [16] ultraproduct construction for team semantics and prove a suitable version of Łoś' Theorem. Second, we show that by working with suitably saturated models, we can generalize the proof of Kontinen and Yang [13] to sets of formulas with arbitrarily many variables.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have