Abstract

Abstract This paper presents a miniaturized dual-element Super-Wideband (SWB) Multiple-Input-Multiple-Output (MIMO) antenna. The operation bandwidth is enhanced by 175% with a Bandwidth Dimension Ratio (BDR) of 6960, using a tapered microstrip line and employing an improved isolation technique. An inverted T-slot is used in the partial ground plane of the antenna. Isolation is increased up to 25 dB over the operating band (1.6–24.5 GHz) by using a pair of T-shaped stubs and a rectangular strip between them. A detailed analysis of the parameters Envelope Correlation Coefficient (ECC), Diversity Gain (DG), Mean Effective Gain (MEG), Total Active Reflection Coefficient (TARC), isolation between the ports, and Channel Capacity Loss (CCL) is undertaken to investigate the performance of proposed SWB MIMO antenna. A prototype of the proposed design is developed by fabricating on the FR–4 (loss tangent 0.02) dielectric substrate of electrical dimension 0.18λ 0 × 0.14λ 0. The measured parameters are in good agreement with the simulated ones. The proposed antenna focusses on 2.4–2.483 GHz frequency band (Bluetooth) and 3.4–3.6 GHz frequency band with a center frequency of 3.5 GHz (as part of the sub 6 GHz 5G band).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call