Abstract

The complementary roles of asynchronous architecture with nonvolatile spintronic devices are explored herein to realize a novel asynchronous logic element. By redesigning the Muller C-element to take advantage of spintronic device non-volatility and area efficiency, benefits such as reduced asynchronous handshaking area overhead, are achieved in addition to instant on/off capabilities for reduced static-power dissipation through power gating. We propose a novel eight transistor and one spintronic device Muller C-element design which is 20% faster and uses 68% of the power of previous non-volatile Muller C-element designs. This spintronic Muller C-element is demonstrated within a four-phase dual-rail asynchronous pipeline resulting in 48% fewer transistors in comparison with the previous designs. Additionally, bundled-data protocol overhead is shown to be reduced by using the spintronic Muller C-element proposed herein. Detailed analysis of the effects of driving transistor width and the tunneling magnetoresistance ratio on device performance characteristics is included.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call