Abstract
A characterization of compact sets in Lp (0, T; B) is given, where 1⩽P⩾∞ and B is a Banach space. For the existence of solutions in nonlinear boundary value problems by the compactness method, the point is to obtain compactness in a space Lp (0,T; B) from estimates with values in some spaces X, Y or B where X⊂B⊂Y with compact imbedding X→B. Using the present characterization for this kind of situations, sufficient conditions for compactness are given with optimal parameters. As an example, it is proved that if {fn} is bounded in Lq(0,T; B) and in L loc 1 (0, T; X) and if {∂fn/∂t} is bounded in L loc 1 (0, T; Y) then {fn} is relatively compact in Lp(0,T; B), ∀p<q.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.