Abstract
In this study, a compact and low-power-consumption quantum random number generator (QRNG) based on a laser diode and a hybrid chip with integrated silicon photonics is proposed and verified experimentally. The hybrid chip’s size is 8.8 × 2.6 × 1 mm3, and the power of the entropy source is 80 mW. A common-mode rejection ratio greater than 40 dB was achieved using an optimized 1 × 2 multimode interferometer structure. A method for optimizing the quantum-to-classical noise ratio is presented. A quantum-to-classical noise ratio of approximately 9 dB was achieved when the photoelectron current is 1 μA using a balance homodyne detector with a high dark current GeSi photodiode. The proposed QRNG has the potential for use in scenarios of moderate MHz random number generation speed, with low power, small volume, and low cost prioritized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.